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Abstract. In the q-deformed theory the perturbation approach can be expressed in terms of two pairs of
undeformed position and momentum operators. There are two configuration spaces. Correspondingly there
are two q-perturbation Hamiltonians; one originates from the perturbation expansion of the potential in
one configuration space, the other one originates from the perturbation expansion of the kinetic energy in
another configuration space. In order to establish a general foundation of the q-perturbation theory, two
perturbation equivalence theorems are proved. The first is Equivalence Theorem I: Perturbation expressions
of the q-deformed uncertainty relations calculated by two pairs of undeformed operators are the same,
and the two q-deformed uncertainty relations undercut Heisenberg’s minimal one in the same style. The
general Equivalence Theorem II is: for any potential (regular or singular) the expectation values of two
q-perturbation Hamiltonians in the eigenstates of the undeformed Hamiltonian are equivalent to all orders
of the perturbation expansion. As an example of singular potentials the perturbation energy spectra of the
q-deformed Coulomb potential are studied.

In searching for new physics at the extremely small space
scale, motivated by recent interest of new field theoretical
models and quantum theories of gravity, there are studies
of quantum theories in non-commutative spaces. The real-
ization of such quantum theories has different approaches.
In one approach the q-deformed quantum theory, as a pos-
sible modification of the ordinary quantum theory at space
scales much smaller than 10−18 cm, has attracted atten-
tion. In the literature different frameworks of q-deformed
quantum theories were established [1–21]. We work in the
framework of the q-deformed Heisenberg algebra devel-
oped in [2,4], which is self-consistent and shows an in-
teresting physical content. In this framework the charac-
teristics of the dynamics and the uncertainty relations of
q-deformed quantum mechanics are explored [1–6,14–21].

Perturbation q-deformed dynamics are involved. The
reason is that there are two pairs of undeformed variables
(x̂, p̂) and (x̃, p̃), and two natural representations of the q-
deformed operators in terms of their undeformed counter-
parts [2,4]. Correspondingly there are two q-perturbation
Hamiltonians: one originates from the perturbation ex-
pansion of the potential in the (x̂, p̂) system, the other
originates from the perturbation expansion of the kinetic
energy in the (x̃, p̃) system [14,16,18,19]. At the level of
operators these two q-perturbation Hamiltonians are dif-
ferent. In the examples of the harmonic-oscillator poten-
tial and the Morse potential, calculations showed that the
expectation values of the two q-perturbation Hamiltoni-
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ans in the eigenstates of the undeformed Hamiltonian are
equivalent [18]. In [19] an equivalence theorem for regular
potentials is demonstrated.

The two pairs of undeformed variables (x̂, p̂) and (x̃, p̃)
are related by a non-trivial transformation [2,4]. It should
be emphasized that this transformation is not a unitary
transformation in a Hilbert space. Though it maintains
the commutation relations [x̂, p̂], it is not clear whether
it leads to the same physical consequences in the general
case.

In order to establish the foundation of the q-perturba-
tion theory, in this paper we demonstrate two equivalence
theorems for general cases. The Equivalence Theorem I
states that the perturbation expressions of q-deformed un-
certainty relations calculated in the (x̂, p̂) system and the
(x̃, p̃) system are the same, and the two q-deformed un-
certainty relations undercut Heisenberg’s minimal one in
the same style.

The Equivalence Theorem II states that for any po-
tential (regular or singular) the expectation values of the
two q-perturbation Hamiltonians in the eigenstates of the
undeformed Hamiltonian are equal to all orders of the per-
turbation expressions. Besides regular potentials demon-
strated before [18,19], as an example of singular potentials
the q-deformed Coulomb potential is studied in detail.

In the following we first review the background. In
terms of the q-deformed phase space variables, the position
operator X and the momentum operator P , the following
q-deformed Heisenberg algebra has been developed [2,4]:
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q1/2XP − q−1/2PX = iU,
UX = q−1XU,

UP = qPU, (1)

where X and P are hermitian and U is unitary: X† = X,
P † = P , U† = U−1. Compared to the Heisenberg algebra
the operator U is a new member, called a scaling operator.
The necessity of introducing the operator U is explained
as follows.

X and P being simultaneously hermitian is a delicate
point in the q-deformed dynamics. The definition of the
algebra (1) is based on the definition of the hermitian
momentum operator P . However, if X is assumed to be
a hermitian operator in a Hilbert space, the q-deformed
derivative [22]

∂XX = 1 + qX∂X ,

which codes the non-commutativity of space, shows that
the usual quantization rule P → −i∂X does not yield a
hermitian momentum operator. A hermitian momentum
operator P is related to ∂X and X in a non-linear way by
introducing a scaling operator U [4]:

U−1 ≡ q1/2[1 + (q − 1)X∂X ],

∂̄X ≡ −q−1/2U∂X ,

P ≡ − i
2
(∂X − ∂̄X),

where ∂̄X is the conjugation of ∂X . The operator U is in-
troduced in the definition of the hermitian momentum;
thus it closely relates to properties of dynamics and plays
an essential role in the q-deformed quantum mechanics.
Non-trivial properties of U imply that the algebra (1) has
a richer structure than Heisenberg’s commutation rela-
tion. In the algebra (1) the parameter q is a fixed real
number. It is important to distinguish different realiza-
tions of the q-algebra by different ranges of q values [23–
25]. Following [2,4] we only consider the case q > 1 in this
paper. The reason is that such a choice of the parame-
ter q leads to a consistent dynamics. In the limit q → 1+

the scaling operator U reduces to the unit operator; thus
the algebra (1) reduces to Heisenberg’s commutation re-
lation. Thus defined, the hermitian momentum P leads to
q-deformation effects, which are exhibited in the dynami-
cal equations. The momentum P non-linearly depends on
X and ∂X . Thus the q-deformed Schrödinger equation is
difficult to treat.

The q-deformed phase space variables X, P and the
scaling operator U can be realized in terms of two pairs
of undeformed variables [4].
(I) The variables x̂, p̂ of the ordinary quantum mechanics,
where x̂, p̂ satisfy [x̂, p̂] = i, x̂ = x̂†, p̂ = p̂†. The q-
deformed operators X, P and U are related to x̂, p̂ as
follows:

X =

[
ẑ +

1
2

]

ẑ +
1
2

x̂, P = p̂, U = qẑ, ẑ = − i
2
(x̂p̂+ p̂x̂),

(2)

where [A] is the q-deformation of A, defined by [A] ≡
(qA − q−A)/(q − q−1). It is easy to check that X, P and
U satisfy the algebra (1).
(II) The variables x̃ and p̃ of an undeformed algebra, which
are obtained by a transformation of x̂ and p̂:

x̃ = x̂F−1(ẑ), p̃ = F (ẑ)p̂, F−1(ẑ) =

[
ẑ − 1

2

]

ẑ − 1
2

. (3)

Thus defined the variables x̃ and p̃ also satisfy the un-
deformed algebra: [x̃, p̃] = i, and x̃ = x̃†, p̃ = p̃†. Thus
p̃ = −i∂x̃, where ∂x̃x̃ ≡ 1. The q-deformed operators X,
P and U are related to x̃ and p̃ as follows:

X = x̃, P = F−1(z̃)p̃, U = qz̃, z̃ = − i
2
(x̃p̃+ p̃x̃),

(4)
where F−1(z̃) is defined by (3) for the variables (x̃, p̃).
From (3) and (4) it follows that thus defined X, P and U
also satisfy the algebra (1), and (4) is equivalent to (2).

The q-deformed phase space (X, P ) governed by the
q-algebra (1) is a q-deformation of the phase space (x̂, p̂)
of ordinary quantum mechanics; thus, all machinery of or-
dinary quantum mechanics can be applied to q-deformed
quantum mechanics. This means that the dynamical equa-
tions of a quantum system are the same for the unde-
formed phase space variables (x̂, p̂), (x̃, p̃) and for the q-
deformed phase space variables (X, P ); that is, the
q-deformed Hamiltonian with the potential V (X) is
H(X,P ) = P 2/(2µ) + V (X).

Now we consider the perturbation treatment of this q-
deformed theory. In view of the success of ordinary quan-
tum mechanics the effects of the q-deformation must be
extremely small; the perturbation investigation of the q-
deformed dynamics is meaningful, and the parameter q
must be extremely close to one. So we can let q = ef =
1 + f + f2, with 0 < f � 1. It is accurate enough to the
order f2 in the perturbation treatment.

In the (x̂, p̂) system and the (x̃, p̃) system from (2)
and (4), to the order f2, it follows that the perturbation
expansions of X and P are

X = x̂+ f2g(x̂, p̂), g(x̂, p̂) = −1
6
(1 + x̂p̂x̂p̂)x̂; (5)

P = p̃+ f2h(x̃, p̃), h(x̃, p̃) = −1
6
(1 + p̃x̃p̃x̃)p̃. (6)

The operator F−1(ẑ) defined by (3) is not unitary,
F−1(ẑ) �= F †(ẑ), which is a variable transformation be-
tween the two configuration spaces; it should be distin-
guished from a unitary transformation in a Hilbert space.
It is not clear whether two perturbation formulations in
the (x̂, p̂) system and the (x̃, p̃) system are equivalent. The
situation is clarified by the following two equivalence the-
orems.

First we consider the perturbation treatment of the
q-deformed uncertainty relation.

Perturbation Equivalence Theorem I: The perturbation
expressions of the q-deformed uncertainty relation calcu-
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lated in the (x̂, p̂) system and the (x̃, p̃) system are the
same.

From the algebra (1) we obtain

XP − PX = iG, G = (U + U†)/(q1/2 + q−1/2).

To the order f2 of the perturbation expansions in the
(x̂, p̂) system and the (x̃, p̃) system the operator G has
the same representation: G = 1 − (1/2)f2ξρξρ; here and
in what follows (ξ, ρ) represents (x̂, p̂) or (x̃, p̃). The cor-
responding q-deformed uncertainty relation reads

∆X ·∆P ≥ 1
2
|〈G〉| ≥ 1

2
− 1

4
f2|〈ξρξρ〉|. (7)

Let us now consider the undercutting phenomenon.
The Equivalence Theorem I shows that the q-deformed un-
certainty relation essentially deviates from the Heisenberg
one: for the case ∆X ·∆P = (1/2) − (1/4)f2|〈ξρξρ〉| the
Heisenberg minimal uncertainty relation ∆X ·∆P = 1/2
is undercut in the same style in the two perturbation for-
mulations.

Now we consider the perturbation treatment of sin-
gular potentials. As an example, we study the Coulomb
potential in detail.

In the (x̂, p̂) system the definition of the q-deformed
Coulomb potential is involved. Here we give its perturba-
tion definition. Because of f � 1 we have f2||g(x̂, p̂)|| <
|x̂| where ||A|| is the norm of the operator A. In the
perturbation expansion, to the order f2, the q-deformed
Coulomb potential is defined by

V (X) =

{
−κ/ [

x̂+ f2g(x̂, p̂)
]

if x̂ > 0,
−κ/ [−x̂+ f2g(−x̂,−p̂)] if x̂ < 0,

(8)

where κ > 0. In the limit q → 1+ the above q-deformed
Coulomb potential reduces to the undeformed one V (x̂) =
−κ|x̂|−1. For singular potentials we use the following op-
erator equation to treat the perturbation expansion:

1
A+B

=
1
A

− 1
A
B

1
A

+
1
A
B

1
A
B

1
A

− 1
A
B

1
A
B

1
A
B

1
A

+ · · · ,
where the norms of the operators A and B satisfy ‖B‖ <
‖A‖. Using (2) and carefully considering the ordering be-
tween the non-commutative quantities x̂ and g(x̂, p̂) in the
perturbation expansion, to the order f2, we express the
q-deformed Hamiltonian of the Coulomb system by the
undeformed variables (x̂, p̂) as H(X,P ) = Hun(x̂, p̂) +
Ĥ

(q)
I,C(x̂, p̂), where the perturbation Hamiltonian

Ĥ
(q)
I,C(x̂, p̂) =



Ĥ

(q)
I+ (x̂, p̂) if x̂ > 0,

Ĥ
(q)
I− (x̂, p̂) if x̂ < 0,

(9)

and

Ĥ
(q)
I+ (x̂, p̂) = −1

6
κf2

(
1
x̂

− ip̂+ x̂p̂2
)

(x̂ > 0);

Ĥ
(q)
I− (x̂, p̂) = Ĥ

(q)
I+ (−x̂,−p̂) (x̂ < 0). (10)

In the (x̃, p̃) system the q-deformed potentials have
the same representations as the undeformed ones, V (X) =
V (x̃) = −κ/|x̃|. But the momentum operator P is a non-
linear function of (x̃, p̃). Using (4) and carefully consider-
ing the ordering between the non-commutative quantities
p̃ and h(x̃, p̃) in the perturbation expansion, to the order
f2, it follows that the q-deformed Hamiltonian H(X,P ) =
Hun(x̃, p̃) + H̃

(q)
I,C(x̃, p̃), where the perturbation Hamilto-

nian is

H̃
(q)
I,C(x̃, p̃) = − f2

12µ
[
2x̃2p̃4 − 8ix̃p̃3 − 3p̃2]. (11)

In the above the undeformed Hamiltonian is Hun(ξ, ρ) =
ρ2/(2µ) − κ/|ξ|.

The two perturbation Hamiltonians Ĥ
(q)
I,C(x̂, p̂) and

H̃
(q)
I,C(x̃, p̃) originate, separately, from the perturbation ex-

pansions of the potential and the kinetic energy. At the
operator level they are different. Now we show that their
contributions to the perturbation shifts of the energy spec-
trum of the undeformed Hamiltonian in the (x̂, p̂) system
and the (x̃, p̃) system are the same.

It is well known that for the undeformed one-dimen-
sional Coulomb system [26] all the excited bound states
are twofold degenerate, having an even and an odd wave
function for each eigenvalue, except for the ground state
which is an even state localized at the point x̂ = 0 and
having infinite binding energy. The even state ψn+ and
the odd state ψn− are

ψn±(x̂) =

{
ψn(x̂) if x̂ > 0,
±ψn(−x̂) if x̂ < 0,

(12)

where

ψn(x̂) = x̂e−x̂/nF (1 − n, 2, 2x̂/n),

and F (1 − n, 2, x) is the usual confluent hypergeometric
function.

Now we calculate the energy shifts in the (x̂, p̂) system
contributed by the Hamiltonian Ĥ(q)

I,C(x̂, p̂). From (9), (10)
and (12) it follows that for the even and the odd state the
perturbation shifts of the undeformed spectrum are

∆Ê(q)
n =

∫ ∞

−∞
dx̂ψ(0)∗

n± (x̂)Ĥ(q)
I,C(x̂, p̂)ψ(0)

n±(x̂) (13)

=
∫ 0

−∞
dx̂

(
±ψ(0)∗

n (−x̂)
)
Ĥ

(q)
I− (x̂, p̂)

(
±ψ(0)

n (−x̂)
)

+
∫ ∞

0
dx̂ψ(0)∗

n (x̂)Ĥ(q)
I+ (x̂, p̂)ψ(0)

n (x̂)

= 2
∫ ∞

0
dx̂ψ(0)∗

n (x̂)Ĥ(q)
I+ (x̂, p̂)ψ(0)

n (x̂)

= −κf2

3

∫ ∞

0
dx̂ψ(0)∗

n (x̂)
{

1
x̂

− ip̂+ x̂p̂2
}
ψ(0)

n (x̂).
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Similarly, in the (x̃, p̃) system the energy shifts con-
tributed by the Hamiltonian H̃(q)

I,C(x̃, p̃) in (11) are

∆Ẽ(q)
n =

∫ ∞

−∞
dx̃ψ(0)∗

n± (x̃)H̃(q)
I,C(x̃, p̃)ψ(0)

n±(x̃)

= 2
∫ ∞

0
dx̃ψ(0)∗

n (x̃)H̃(q)
I,C(x̃, p̃)ψ(0)

n (x̃)

= − f2

6µ

∫ ∞

0
dx̃ψ(0)∗

n (x̃)

×{2x̃2p̃4 − 8ix̃p̃3 − 3p̃2}ψ(0)
n (x̃). (14)

In the undeformed stationary states |ψ(0)〉 the time deriva-
tive of the expectation value of the operator ξmρn is

i
d
dt

〈ψ(0)|ξmρn|ψ(0)〉

= 〈ψ(0)|
[
ξmρn,

1
2µ
ρ2 + V (ξ)

]
|ψ(0)〉 = 0.

For the case m+ n = even the above equation reduces to∫ ∞

0
dξψ(0)∗

n (ξ)
[
ξmρn,

1
2µ
ρ2 + V (ξ)

]
ψ(0)

n (ξ) = 0. (15)

From (15) for the cases of m = n = 3 and m = n = 2 it
follows that for the Coulomb potential we have∫ ∞

0
dξψ(0)∗

n (ξ)ξ2ρ4ψ(0)
n (ξ)

=
∫ ∞

0
dξψ(0)∗

n (ξ)
[
iξρ3 + κµ

(
ξρ2 + 2iρ− 2

ξ

)]
ψ(0)

n (ξ);∫ ∞

0
dξψ(0)∗

n (ξ)ξρ3ψ(0)
n (ξ)

=
∫ ∞

0
dξψ(0)∗

n (ξ)
[

i
2
ρ+ κµ

(
ρ+

i
ξ

)]
ψ(0)

n (ξ). (16)

Using the above two equations we prove that (13) and (14)
are equivalent.

In the general cases such an equivalence can be sum-
marized as Perturbation Equivalence Theorem II: For any
potential (regular or singular) the expectation value∆Ê(q)

n

of the Hamiltonian Ĥ
(q)
I (x̂, p̂) and the expectation value

∆Ẽ
(q)
n of the Hamiltonian H̃

(q)
I (x̃, p̃) in the same eigen-

state of the undeformed Hamiltonian are equal to all or-
ders of the perturbation expansions. Whereas Ĥ(q)

I (x̂, p̂)
originates from the perturbation expansion of the poten-
tial in the (x̂, p̂) system, H̃(q)

I (x̃, p̃) originates from the
perturbation expansion of the kinetic energy in the (x̃, p̃)
system.

Suppose that the Schrödinger equation for the unde-
formed system Hun is solved, Hun|ψ(0)

n 〉 = E
(un)
n |ψ(0)

n 〉.
It is obvious that the structure of the undeformed wave
function ψ

(0)
n (x̂0) = 〈x̂0|ψ(0)

n 〉 in the configuration space
x̂0 and the structure of the undeformed wave function
ψ

(0)
n (x̃0) = 〈x̃0|ψ(0)

n 〉 in the configuration space x̃0 are the
same. Because of the hermitian character of Hun(ξ, ρ) it

is natural to assume that its eigen wave functions satisfy
the completeness relations

∫ |ξ〉dξ〈ξ| = I in either config-
uration space ξ = x̂0 or ξ = x̃0.

Now the demonstration of the Equivalence Theorem
II is simple. In the (x̂, p̂) system H(X,P ) = Hun(x̂, p̂) +
Ĥ

(q)
I (x̂, p̂) where the q-perturbation Hamiltonian Ĥ

(q)
I (x̂,

p̂) ≡ V (X(x̂, p̂)) − V (x̂) for any potential (regular or sin-
gular). Taking the expectation value of H(X,P ) in the
undeformed state |ψ(0)

n 〉, we have

〈ψ(0)
n |H(X,P )|ψ(0)

n 〉 = E(un)
n + 〈ψ(0)

n |Ĥ(q)
I (x̂, p̂)|ψ(0)

n 〉.
For the second term in the right hand side of this equation
projecting |ψ(0)

n 〉 to the base |x̂0〉 and using the complete-
ness relation

∫ |x̂0〉dx̂0〈x̂0| = I, it leads to∫
dx̂0〈ψ(0)

n |x̂0〉〈x̂0|Ĥ(q)
I (x̂, p̂)|ψ(0)

n 〉

=
∫

dx̂0ψ
(0)∗
n (x̂0)Ĥ

(q)
I (x̂0,−i∂x̂0)ψ

(0)
n (x̂0).

Thus we obtain

En = 〈ψ(0)
n |H(X,P )|ψ(0)

n 〉 = E(un)
n +∆Ê(q)

n , (17)

∆Ê(q)
n =

∫
dx̂0ψ

(0)∗
n (x̂0)Ĥ

(q)
I (x̂0,−i∂x̂0)ψ

(0)
n (x̂0). (18)

In the (x̃, p̃) system

H(X,P ) = Hun(x̃, p̃) + H̃
(q)
I (x̃, p̃)

where the q-perturbation Hamiltonian

H̃
(q)
I (x̃, p̃) ≡ (1/2µ)P 2(x̃, p̃) − (1/2µ)p̃2.

By a similar procedure we obtain

En = 〈ψ(0)
n |H(X,P )|ψ(0)

n 〉 = E(un)
n +∆Ẽ(q)

n , (19)

∆Ẽ(q)
n =

∫
dx̃0ψ

(0)∗
n (x̃0)H̃

(q)
I (x̃0,−i∂x̃0)ψ

(0)
n (x̃0). (20)

From (17) to (20) we conclude that to all orders of the
perturbation expansions

∆Ê(q)
n = ∆Ẽ(q)

n . (21)

In the above the perturbation Hamiltonian H̃
(q)
I (x̃, p̃)

itself is potential independent; as for any potential it keeps
the same representation, but the undeformed wave func-
tions ψ(0)

n (x̃0) are potential dependent, thus the q-pertur-
bation shifts ∆Ẽ(q)

n of the undeformed energy spectrum in
the (x̃, p̃) system are potential dependent.

In the q-deformed quantum theory, unlike ordinary
quantum theory, there is a non-trivial transformation
among two pairs of the undeformed variables (x̂, p̂) and
(x̃, p̃). It is not a unitary transformation in a Hilbert space.
Such a variable transformation leads to two formulations
in two configuration spaces. The q-perturbation quantum
theory is much more complex than the ordinary one. The
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Equivalence Theorems I and II clarify the foundation for
perturbation calculations in the q-deformed dynamics.
Based on the equivalence theorems the perturbation ef-
fects can be calculated in the (x̂, p̂) system or the (x̃, p̃)
system. In the (x̃, p̃) system for any potential the per-
turbation Hamiltonian H̃

(q)
I (x̃, p̃) keeps the same form;

thus it provides a unified formulation for calculating the
q-perturbation shifts of the energy spectrum.

If the q-deformed quantum theory is a relevant theory
for the extremely short space scale, its corrections to the
ordinary quantum theory must be extremely small in the
energy range of present experiments. Perturbation stud-
ies of the q-deformed dynamics show a clear indication of
q-deformed modifications to the ordinary quantum the-
ory. The investigation in the q-squeezed state [17] may
provide some evidence about such q-deformed effects to
present experiments. Further exploration of the effects of
the q-deformation based on the q-deformed equivalence
theorems is in progress.
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